- Home
- Ted Chiang
Lightspeed Magazine Issue 31 Page 3
Lightspeed Magazine Issue 31 Read online
Page 3
“Uh-oh.” I took another look at the writing for the simple noun-verb examples, the ones that had seemed inconsistent before. Now I realized all of them actually did contain the logogram for “heptapod”; some were rotated and distorted by being combined with the various verbs, so I hadn’t recognized them at first. “You guys have got to be kidding,” I muttered.
“What’s wrong?” asked Gary.
“Their script isn’t word divided; a sentence is written by joining the logograms for the constituent words. They join the logograms by rotating and modifying them. Take a look.” I showed him how the logograms were rotated.
“So they can read a word with equal ease no matter how it’s rotated,” Gary said. He turned to look at the heptapods, impressed. “I wonder if it’s a consequence of their bodies’ radial symmetry: their bodies have no ‘forward’ direction, so maybe their writing doesn’t either. Highly neat.”
I couldn’t believe it; I was working with someone who modified the word “neat” with “highly.”
“It certainly is interesting,” I said, “but it also means there’s no easy way for us to write our own sentences in their language. We can’t simply cut their sentences into individual words and recombine them; we’ll have to learn the rules of their script before we can write anything legible. It’s the same continuity problem we’d have had splicing together speech fragments, except applied to writing.”
I looked at Flapper and Raspberry in the looking glass, who were waiting for us to continue, and sighed. “You aren’t going to make this easy for us, are you?”
To be fair, the heptapods were completely cooperative. In the days that followed, they readily taught us their language without requiring us to teach them any more English. Colonel Weber and his cohorts pondered the implications of that, while I and the linguists at the other looking glasses met via videoconferencing to share what we had learned about the heptapod language. The videoconferencing made for an incongruous working environment: our video screens were primitive compared to the heptapods’ looking glasses, so that my colleagues seemed more remote than the aliens. The familiar was far away, while the bizarre was close at hand.
It would be a while before we’d be ready to ask the heptapods why they had come, or to discuss physics well enough to ask them about their technology. For the time being, we worked on the basics: phonemics/graphemics, vocabulary, syntax. The heptapods at every looking glass were using the same language, so we were able to pool our data and coordinate our efforts.
Our biggest source of confusion was the heptapods’ “writing.” It didn’t appear to be writing at all; it looked more like a bunch of intricate graphic designs. The logograms weren’t arranged in rows, or a spiral, or any linear fashion. Instead, Flapper or Raspberry would write a sentence by sticking together as many logograms as needed into a giant conglomeration.
This form of writing was reminiscent of primitive sign systems, which required a reader to know a message’s context in order to understand it. Such systems were considered too limited for systematic recording of information. Yet it was unlikely that the heptapods developed their level of technology with only an oral tradition. That implied one of three possibilities: the first was that the heptapods had a true writing system, but they didn’t want to use it in front of us; Colonel Weber would identify with that one. The second was that the heptapods hadn’t originated the technology they were using; they were illiterates using someone else’s technology. The third, and most interesting to me, was that the heptapods were using a nonlinear system of orthography that qualified as true writing.
I remember a conversation we’ll have when you’re in your junior year of high school. It’ll be Sunday morning, and I’ll be scrambling some eggs while you set the table for brunch. You’ll laugh as you tell me about the party you went to last night.
“Oh man,” you’ll say, “they’re not kidding when they say that body weight makes a difference. I didn’t drink any more than the guys did, but I got so much drunker.”
I’ll try to maintain a neutral, pleasant expression. I’ll really try. Then you’ll say, “Oh, come on, Mom.”
“What?”
“You know you did the exact same things when you were my age.”
I did nothing of the sort, but I know that if I were to admit that, you’d lose respect for me completely. “You know never to drive, or get into a car if—”
“God, of course I know that. Do you think I’m an idiot?”
“No, of course not.”
What I’ll think is that you are clearly, maddeningly not me. It will remind me, again, that you won’t be a clone of me; you can be wonderful, a daily delight, but you won’t be someone I could have created by myself.
The military had set up a trailer containing our offices at the looking-glass site. I saw Gary walking toward the trailer, and ran to catch up with him. “It’s a semasiographic writing system,” I said when I reached him.
“Excuse me?” said Gary.
“Here, let me show you.” I directed Gary into my office. Once we were inside, I went to the chalkboard and drew a circle with a diagonal line bisecting it. “What does this mean?”
“‘Not allowed?”
“Right.” Next I printed the words Not Allowed on the chalkboard. “And so does this. But only one is a representation of speech.”
Gary nodded. “Okay.”
“Linguists describe writing like this—” I indicated the printed words “—as ‘glottographic,’ because it represents speech. Every human written language is in this category. However, this symbol—” I indicated the circle and diagonal line “—is ‘semasiographic’ writing, because it conveys meaning without reference to speech. There’s no correspondence between its components and any particular sounds.”
“And you think all of heptapod writing is like this?”
“From what I’ve seen so far, yes. It’s not picture writing, it’s far more complex. It has its own system of rules for constructing sentences, like a visual syntax that’s unrelated to the syntax for their spoken language.”
“A visual syntax? Can you show me an example?”
“Coming right up.” I sat down at my desk and, using the computer, pulled up a frame from the recording of yesterday’s conversation with Raspberry. I turned the monitor so he could see it. “In their spoken language, a noun has a case marker indicating whether it’s a subject or object. In their written language, however, a noun is identified as subject or object based on the orientation of its logogram relative to that of the verb. Here, take a look.” I pointed at one of the figures. “For instance, when ‘heptapod’ is integrated with ‘hears’ this way, with these strokes parallel, it means that the heptapod is doing the hearing.” I showed him a different one. “When they’re combined this way, with the strokes perpendicular, it means that the heptapod is being heard. This morphology applies to several verbs.
“Another example is the inflection system.” I called up another frame from the recording. “In their written language, this logogram means roughly ‘hear easily’ or ‘hear clearly.’ See the elements it has in common with the logogram for ‘hear’? You can still combine it with ‘heptapod’ in the same ways as before, to indicate that the heptapod can hear something clearly or that the heptapod is clearly heard. But what’s really interesting is that the modulation of ‘hear’ into ‘hear clearly’ isn’t a special case; you see the transformation they applied?”
Gary nodded, pointing. “It’s like they express the idea of ‘clearly’ by changing the curve of those strokes in the middle.”
“Right. That modulation is applicable to lots of verbs. The logogram for ‘see’ can be modulated in the same way to form ‘see clearly,’ and so can the logogram for ‘read’ and others. And changing the curve of those strokes has no parallel in their speech; with the spoken version of these verbs, they add a prefix to the verb to express ease of manner, and the prefixes for ‘see’ and ‘hear’ are different.
“
There are other examples, but you get the idea. It’s essentially a grammar in two dimensions.”
He began pacing thoughtfully. “Is there anything like this in human writing systems?”
“Mathematical equations, notations for music and dance. But those are all very specialized; we couldn’t record this conversation using them. But I suspect, if we knew it well enough, we could record this conversation in the heptapod writing system. I think it’s a full-fledged, general-purpose graphical language.”
Gary frowned. “So their writing constitutes a completely separate language from their speech, right?”
“Right. In fact, it’d be more accurate to refer to the writing system as ‘Heptapod B,’ and use ‘Heptapod A’ strictly for referring to the spoken language.”
“Hold on a second. Why use two languages when one would suffice? That seems unnecessarily hard to learn.”
“Like English spelling?” I said. “Ease of learning isn’t the primary force in language evolution. For the heptapods, writing and speech may play such different cultural or cognitive roles that using separate languages makes more sense than using different forms of the same one.”
He considered it. “I see what you mean. Maybe they think our form of writing is redundant, like we’re wasting a second communications channel.”
“That’s entirely possible. Finding out why they use a second language for writing will tell us a lot about them.”
“So I take it this means we won’t be able to use their writing to help us learn their spoken language.”
I sighed. “Yeah, that’s the most immediate implication. But I don’t think we should ignore either Heptapod A or B; we need a two-pronged approach.” I pointed at the screen. “I’ll bet you that learning their two-dimensional grammar will help you when it comes time to learn their mathematical notation.”
“You’ve got a point there. So are we ready to start asking about their mathematics?”
“Not yet. We need a better grasp on this writing system before we begin anything else,” I said, and then smiled when he mimed frustration. “Patience, good sir. Patience is a virtue.”
You’ll be six when your father has a conference to attend in Hawaii, and we’ll accompany him. You’ll be so excited that you’ll make preparations for weeks beforehand. You’ll ask me about coconuts and volcanoes and surfing, and practice hula dancing in the mirror. You’ll pack a suitcase with the clothes and toys you want to bring, and you’ll drag it around the house to see how long you can carry it. You’ll ask me if I can carry your Etch-a-Sketch in my bag, since there won’t be any more room for it in yours and you simply can’t leave without it.
“You won’t need all of these,” I’ll say. “There’ll be so many fun things to do there, you won’t have time to play with so many toys.”
You’ll consider that; dimples will appear above your eyebrows when you think hard. Eventually you’ll agree to pack fewer toys, but your expectations will, if anything, increase.
“I wanna be in Hawaii now,” you’ll whine.
“Sometimes it’s good to wait,” I’ll say. “The anticipation makes it more fun when you get there.”
You’ll just pout.
In the next report I submitted, I suggested that the term “logogram” was a misnomer because it implied that each graph represented a spoken word, when in fact the graphs didn’t correspond to our notion of spoken words at all. I didn’t want to use the term “ideogram” either because of how it had been used in the past; I suggested the term “semagram” instead.
It appeared that a semagram corresponded roughly to a written word in human languages: it was meaningful on its own, and in combination with other semagrams could form endless statements. We couldn’t define it precisely, but then no one had ever satisfactorily defined “word” for human languages either. When it came to sentences in Heptapod B, though, things became much more confusing. The language had no written punctuation: its syntax was indicated in the way the semagrams were combined, and there was no need to indicate the cadence of speech. There was certainly no way to slice out subject-predicate pairings neatly to make sentences. A “sentence” seemed to be whatever number of semagrams a heptapod wanted to join together; the only difference between a sentence and a paragraph, or a page, was size.
When a Heptapod B sentence grew fairly sizable, its visual impact was remarkable. If I wasn’t trying to decipher it, the writing looked like fanciful praying mantids drawn in a cursive style, all clinging to each other to form an Escheresque lattice, each slightly different in its stance. And the biggest sentences had an effect similar to that of psychedelic posters: sometimes eye-watering, sometimes hypnotic.
I remember a picture of you taken at your college graduation. In the photo you’re striking a pose for the camera, mortarboard stylishly tilted on your head, one hand touching your sunglasses, the other hand on your hip, holding open your gown to reveal the tank top and shorts you’re wearing underneath.
I remember your graduation. There will be the distraction of having Nelson and your father and what’s-her-name there all at the same time, but that will be minor. That entire weekend, while you’re introducing me to your classmates and hugging everyone incessantly, I’ll be all but mute with amazement. I can’t believe that you, a grown woman taller than me and beautiful enough to make my heart ache, will be the same girl I used to lift off the ground so you could reach the drinking fountain, the same girl who used to trundle out of my bedroom draped in a dress and hat and four scarves from my closet.
And after graduation, you’ll be heading for a job as a financial analyst. I won’t understand what you do there, I won’t even understand your fascination with money, the preeminence you gave to salary when negotiating job offers. I would prefer it if you’d pursue something without regard for its monetary rewards, but I’ll have no complaints. My own mother could never understand why I couldn’t just be a high school English teacher. You’ll do what makes you happy, and that’ll be all I ask for.
As time went on, the teams at each looking glass began working in earnest on learning heptapod terminology for elementary mathematics and physics. We worked together on presentations, with the linguists focusing on procedure and the physicists focusing on subject matter. The physicists showed us previously devised systems for communicating with aliens, based on mathematics, but those were intended for use over a radio telescope. We reworked them for face-to-face communication.
Our teams were successful with basic arithmetic, but we hit a roadblock with geometry and algebra. We tried using a spherical coordinate system instead of a rectangular one, thinking it might be more natural to the heptapods given their anatomy, but that approach wasn’t any more fruitful. The heptapods didn’t seem to understand what we were getting at.
Likewise, the physics discussions went poorly. Only with the most concrete terms, like the names of the elements, did we have any success; after several attempts at representing the periodic table, the heptapods got the idea. For anything remotely abstract, we might as well have been gibbering. We tried to demonstrate basic physical attributes like mass and acceleration so we could elicit their terms for them, but the heptapods simply responded with requests for clarification. To avoid perceptual problems that might be associated with any particular medium, we tried physical demonstrations as well as line drawings, photos, and animations; none were effective. Days with no progress became weeks, and the physicists were becoming disillusioned.
By contrast, the linguists were having much more success. We made steady progress decoding the grammar of the spoken language, Heptapod A. It didn’t follow the pattern of human languages, as expected, but it was comprehensible so far: free word order, even to the extent that there was no preferred order for the clauses in a conditional statement, in defiance of a human language “universal.” It also appeared that the heptapods had no objection to many levels of center-embedding of clauses, something that quickly defeated humans. Peculiar, but not impenetrable.
r /> Much more interesting were the newly discovered morphological and grammatical processes in Heptapod B that were uniquely two-dimensional. Depending on a semagram’s declension, inflections could be indicated by varying a certain stroke’s curvature, or its thickness, or its manner of undulation; or by varying the relative sizes of two radicals, or their relative distance to another radical, or their orientations; or various other means. These were non-segmental graphemes; they couldn’t be isolated from the rest of a semagram. And despite how such traits behaved in human writing, these had nothing to do with calligraphic style; their meanings were defined according to a consistent and unambiguous grammar.
We regularly asked the heptapods why they had come. Each time, they answered “to see,” or “to observe.” Indeed, sometimes they preferred to watch us silently rather than answer our questions. Perhaps they were scientists, perhaps they were tourists. The State Department instructed us to reveal as little as possible about humanity, in case that information could be used as a bargaining chip in subsequent negotiations. We obliged, though it didn’t require much effort: The heptapods never asked questions about anything. Whether scientists or tourists, they were an awfully incurious bunch.
I remember once when we’ll be driving to the mall to buy some new clothes for you. You’ll be thirteen. One moment you’ll be sprawled in your seat, completely unself-conscious, all child; the next, you’ll toss your hair with a practiced casualness, like a fashion model in training.
You’ll give me some instructions as I’m parking the car. “Okay, Mom, give me one of the credit cards, and we can meet back at the entrance here in two hours.”